拉杰· 帕斯里亞(R. K. Pathria)是一位理論物理學家。他因研究液氦中的超流動性、熱力學量的洛倫茲變換、晶格和的嚴格計算以及相變中的有限尺寸效應而聞名。帕特里亞于1953年和1954年分別獲得霍希爾布爾潘賈布大學理學學士和理學碩士學位,并于1957年獲得德里大學物理學博士學位。曾任教于他曾在德里大學、麥克馬斯特大學、阿爾伯塔大學、昌迪加爾潘賈布大學和滑鐵盧大學。于2000 年加入加利福尼亞大學圣地亞哥分校,擔任物理學兼職教授?;F盧大學授予他“杰出教師獎”和“杰出名譽教授”稱號,他還是美國物理學會會員。保羅·比爾(Paul D. Beale)是一位理論物理學家,科羅拉多大學博爾德分校的物理學教授。專攻統(tǒng)計力學,重點研究相變和臨界現(xiàn)象。他的研究工作包括重正化群方法,分子系統(tǒng)的固液相變,以及分子偶極子層中的有序化等。他于1977年以最高榮譽獲得北卡羅來納大學教堂山分校物理學學士學位,并于1982年獲得康奈爾大學物理學博士學位。1982—1984年,他在牛津大學理論物理系擔任博士后助理研究員。1984年,他加入科羅拉多大學博爾德分校任助理教授,1991年晉升為副教授,1997年晉升為教授。2008—2016年,他擔任物理系主任。他還曾擔任文理學院自然科學副院長和榮譽項目主任。
圖書目錄
Preface to the fourth edition Preface to the third edition Preface to the second edition Preface to the first edition Historical introduction
The statistical basis of thermodynamics
1.1. The macroscopic and the microscopic states 1.2. Contact between statistics and thermodynamics :physical significance of the number Ω(N, V, E) 1.3. Further contact between statistics and thermodynamics 1.4. The classical ideal gas 1.5. The entropy of mixing and the Gibbs paradox 1.6. The “correct" enumeration of the microstates Problems
Elements of ensemble theory
2.1. Phase space of a classical system 2.2. Liouville's theorem and its consequences 2.3. The microcanonical ensemble 2.4. Examples 2.5. Quantum states and the phase space Problems 3.The canonical ensemble 3.1. Equilibrium between a system and a heat reservoir 3.2. A system in the canonical ensemble 3.3. Physical significance of the various statistical quantities in the canonical ensemble 3.4. Alternative expressions for the partition function 3.5. The classical systems 3.6. Energy fluctuations in the canonical ensemble: correspondence with the microcanonical ensemble 3.7. Two theorems-the “equipartition" and the “virial 3.8. A system of harmonic oscillators 3.9. The statistics of paramagnetism 3.10. Thermodynamics of magnetic systems: negative temperatures Problems
The grand canonical ensemble
4.1. Equilibrium between a system and a particle-energy reservoir 4.2. A system in the grand canonical ensemble 4.3. Physical significance of the various statistical quantities 4.4. Examples 4.5. Density and energy fluctuations in the grand canonical ensemble: correspondence with other ensembles 4.6. Thermodynamic phase diagrams 4.7. Phase equilibrium and the Clausius-Clapeyron equation Problems
Formulation of quantum statistics
5.1. Quantum-mechanical ensemble theory: the density matrix 5.2. Statistics of the various ensembles 5.3. Examples 5.4. Systems composed of indistinguishable particles 5.5. The density matrix and the partition function of a system of free particles 5.6. Eigenstate thermalization hypothesis Problems
The theory of simple gases
6.1. An ideal gas in a quantum-mechanical microcanonical ensemble 6.2. An ideal gas in other quantum-mechanical ensembles 6.3. Statistics of the occupation numbers 6.4. Kinetic considerations 6.5. Gaseous systems composed of molecules with internal motion 6.6. Chemical equilibrium Problems
ldeal Bose systems
7.1. Thermodynamic behavior of an ideal Bose gas 7.2. Bose-Einstein condensation in ultracold atomic gases 7.3. Thermodynamics of the blackbody radiation 7.4. The field of sound waves 7.5. Inertial density of the sound field 7.6. Elementary excitations in liquid helium II Problems
ldeal Fermi systems
8.1. Thermodynamic behavior of an ideal Fermi gas 8.2. Magnetic behavior of an ideal Fermi gas 8.3. The electron gas in metals 8.4. Ultracold atomic Fermi gases 8.5. Statistical equilibrium of white dwarf stars 8.6. Statistical model of the atom Problems
Thermodynamics of the early universe
9.1. Observational evidence of the Big Bang 9.2. Evolution of the temperature of the universe 9.3. Relativistic electrons, positrons, and neutrinos 9.4. Neutron fraction 9.5. Annihilation of the positrons and electrons 9.6. Neutrino temperature 9.7. Primordial nucleosynthesis 9.8. Recombination 9.9. Epilogue Problems 10.Statistical mechanics of interacting systems: the method of cluster expansions 10.1. Cluster expansion for a classical gas 10.2. Virial expansion of the equation of state 10.3. Evaluation of the virial coeffcients 10.4. General remarks on cluster expansions 10.5. Exact treatment of the second virial coeffcient 10.6. Cluster expansion for a quantum-mechanical system 10.7. Correlations and scattering Problems
Statistical mechanics of interacting systems: the method of quantized fields
11.1. The formalism of second quantization 11.2. Low-temperature behavior of an imperfect Bose gas 11.3. Low-lying states of an imperfect Bose gas 11.4. Energy spectrum of a Bose liquid 11.5. States with quantized circulation 11.6. Quantized vortex rings and the breakdown of superfluidity 11.7. Low-lying states of an imperfect Fermi gas 11.8. Energy spectrum of a Fermi liquid: Landau's phenomenological theory 11.9. Condensation in Fermi systems Problems
Phase transitions: criticality, universality, and scaling
12.1. General remarks on the problem of condensation 12.2. Condensation of a van der Waals gas 12.3. A dynamical model of phase transitions 12.4. The lattice gas and the binary alloy 12.5. Ising model in the zeroth approximation 12.6. Ising model in the first approximation 12.7. The critical exponents 12.8. Thermodynamic inequalities 12.9. Landau's phenomenological theory 12.10. Scaling hypothesis for thermodynamic functions 12.11. The role of correlations and fluctuations 12.12. The critical exponents ν and η 12.13. A final look at the mean field theory Problems
Phase transitions: exact (or almost exact) results for various models
13.1. One-dimensional fluid models 13.2. The Ising model in one dimension 13.3. The n-vector models in one dimension 13.4. The Ising model in two dimensions 13.5. The spherical model in arbitrary dimensions 13.6. The ideal Bose gas in arbitrary dimensions 13.7. Other models Problems
Phase transitions: the renormalization group approach
14.1. The conceptual basis of scaling 14.2. Some simple examples of renormalization 14.3. The renormalization group: general formulation 14.4. Applications of the renormalization group 14.5. Finite-size scaling Problems
Fluctuations and nonequilibrium statistical mechanics
15.1. Equilibrium thermodynamic fluctuations 15.2. The Einstein-Smoluchowski theory of the Brownian motion 15.3. The Langevin theory of the Brownian motion 15.4. Approach to equilibrium: the Fokker-Planck equation 15.5. Spectral analysis of fluctuations: the Wiener-Khintchine theorem 15.6. The fluctuation-dissipation theorem 15.7. The Onsager relations 15.8. Exact equilibrium free energy differences from nonequilibrium measurements
Computer Simulations
16.1. Introduction and statistics 16.2. Monte Carlo simulations 16.3. Molecular dynamics16.3. 16.4. Particle simulations 16.5. Computer simulation caveats Problems Appendices
Influence of boundary conditions on the distribution of quantum states
Certain mathematical functions
“Volume” and “surface area” of an n-dimensional sphere of radius R
On Bose-Einstein functions
On Fermi-Dirac functions
A rigorous analysis of the ideal Bose gas and the onset of Bose-Einstein condensation
On Watson functions
Thermodynamic relationships
Pseudorandom numbers
Bibliography Index