注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當前位置: 首頁出版圖書科學技術(shù)自然科學力學統(tǒng)計力學物理學經(jīng)典(第4版 英文版)

統(tǒng)計力學物理學經(jīng)典(第4版 英文版)

統(tǒng)計力學物理學經(jīng)典(第4版 英文版)

定 價:¥139.00

作 者: 〔美〕拉杰· 帕斯里亞(R. K. Pathria)〔美〕保羅·比爾(Paul D. Beale)
出版社: 世界圖書出版公司
叢編項:
標 簽: 暫缺

購買這本書可以去


ISBN: 9787523218587 出版時間: 2025-04-01 包裝: 平裝-膠訂
開本: 16開 頁數(shù): 字數(shù):  

內(nèi)容簡介

  本書是統(tǒng)計力學課程的教材,第一版于1972年出版,至今已有五十多年的時間。本書是于2022年出版的第四版。本書共16章。第1章至第 9 章屬于統(tǒng)計力學的基礎(chǔ)知識。包括熱力學的統(tǒng)計基礎(chǔ)、系綜理論的基本原理、正則系綜、巨正則系綜、量子統(tǒng)計學的表述形式、簡單氣體理論、理想玻色系統(tǒng)和理想費米系統(tǒng),以及早期宇宙熱力學;第 10 章至第 15 章的內(nèi)容難度相對較高,包括相互作用系統(tǒng)的統(tǒng)計力學:集團展開法和量子場方法,漲落和非平衡統(tǒng)計力學,以及相變和臨界現(xiàn)象的相關(guān)主題;最后一章則介紹了計算機模擬。此外在正文開始之前作者還增加了統(tǒng)計力學的歷史介紹,能夠滿足對這部分歷史感興趣的讀者。本書還提供了相當廣泛的參考書目。書目中包含各種參考文獻——既有舊的,也有新的;既有實驗性的,也有理論性的;既有技術(shù)性的,也有教學性的。這將使本書對更多讀者有用。

作者簡介

  拉杰· 帕斯里亞(R. K. Pathria)是一位理論物理學家。他因研究液氦中的超流動性、熱力學量的洛倫茲變換、晶格和的嚴格計算以及相變中的有限尺寸效應而聞名。帕特里亞于1953年和1954年分別獲得霍希爾布爾潘賈布大學理學學士和理學碩士學位,并于1957年獲得德里大學物理學博士學位。曾任教于他曾在德里大學、麥克馬斯特大學、阿爾伯塔大學、昌迪加爾潘賈布大學和滑鐵盧大學。于2000 年加入加利福尼亞大學圣地亞哥分校,擔任物理學兼職教授?;F盧大學授予他“杰出教師獎”和“杰出名譽教授”稱號,他還是美國物理學會會員。保羅·比爾(Paul D. Beale)是一位理論物理學家,科羅拉多大學博爾德分校的物理學教授。專攻統(tǒng)計力學,重點研究相變和臨界現(xiàn)象。他的研究工作包括重正化群方法,分子系統(tǒng)的固液相變,以及分子偶極子層中的有序化等。他于1977年以最高榮譽獲得北卡羅來納大學教堂山分校物理學學士學位,并于1982年獲得康奈爾大學物理學博士學位。1982—1984年,他在牛津大學理論物理系擔任博士后助理研究員。1984年,他加入科羅拉多大學博爾德分校任助理教授,1991年晉升為副教授,1997年晉升為教授。2008—2016年,他擔任物理系主任。他還曾擔任文理學院自然科學副院長和榮譽項目主任。

圖書目錄

Preface to the fourth edition
Preface to the third edition
Preface to the second edition
Preface to the first edition
Historical introduction The statistical basis of thermodynamics 1.1. The macroscopic and the microscopic states
1.2. Contact between statistics and thermodynamics :physical significance of the number Ω(N, V, E)
1.3. Further contact between statistics and thermodynamics
1.4. The classical ideal gas
1.5. The entropy of mixing and the Gibbs paradox
1.6. The “correct" enumeration of the microstates
Problems Elements of ensemble theory 2.1. Phase space of a classical system
2.2. Liouville's theorem and its consequences
2.3. The microcanonical ensemble
2.4. Examples
2.5. Quantum states and the phase space
Problems
3.The canonical ensemble
3.1. Equilibrium between a system and a heat reservoir
3.2. A system in the canonical ensemble
3.3. Physical significance of the various statistical quantities in the canonical ensemble
3.4. Alternative expressions for the partition function
3.5. The classical systems
3.6. Energy fluctuations in the canonical ensemble: correspondence with the microcanonical ensemble
3.7. Two theorems-the “equipartition" and the “virial
3.8. A system of harmonic oscillators
3.9. The statistics of paramagnetism
3.10. Thermodynamics of magnetic systems: negative temperatures
Problems The grand canonical ensemble 4.1. Equilibrium between a system and a particle-energy reservoir
4.2. A system in the grand canonical ensemble
4.3. Physical significance of the various statistical quantities
4.4. Examples
4.5. Density and energy fluctuations in the grand canonical ensemble: correspondence with other ensembles
4.6. Thermodynamic phase diagrams
4.7. Phase equilibrium and the Clausius-Clapeyron equation
Problems Formulation of quantum statistics 5.1. Quantum-mechanical ensemble theory: the density matrix
5.2. Statistics of the various ensembles
5.3. Examples
5.4. Systems composed of indistinguishable particles
5.5. The density matrix and the partition function of a system of free particles
5.6. Eigenstate thermalization hypothesis
Problems The theory of simple gases 6.1. An ideal gas in a quantum-mechanical microcanonical ensemble
6.2. An ideal gas in other quantum-mechanical ensembles
6.3. Statistics of the occupation numbers
6.4. Kinetic considerations
6.5. Gaseous systems composed of molecules with internal motion
6.6. Chemical equilibrium
Problems ldeal Bose systems 7.1. Thermodynamic behavior of an ideal Bose gas
7.2. Bose-Einstein condensation in ultracold atomic gases
7.3. Thermodynamics of the blackbody radiation
7.4. The field of sound waves
7.5. Inertial density of the sound field
7.6. Elementary excitations in liquid helium II
Problems ldeal Fermi systems        8.1. Thermodynamic behavior of an ideal Fermi gas
8.2. Magnetic behavior of an ideal Fermi gas
8.3. The electron gas in metals
8.4. Ultracold atomic Fermi gases
8.5. Statistical equilibrium of white dwarf stars
8.6. Statistical model of the atom
Problems Thermodynamics of the early universe 9.1. Observational evidence of the Big Bang
9.2. Evolution of the temperature of the universe
9.3. Relativistic electrons, positrons, and neutrinos
9.4. Neutron fraction
9.5. Annihilation of the positrons and electrons
9.6. Neutrino temperature
9.7. Primordial nucleosynthesis
9.8. Recombination
9.9. Epilogue
Problems
10.Statistical mechanics of interacting systems: the method of cluster expansions
10.1. Cluster expansion for a classical gas
10.2. Virial expansion of the equation of state
10.3. Evaluation of the virial coeffcients
10.4. General remarks on cluster expansions
10.5. Exact treatment of the second virial coeffcient
10.6. Cluster expansion for a quantum-mechanical system
10.7. Correlations and scattering
Problems Statistical mechanics of interacting systems: the method of quantized fields 11.1. The formalism of second quantization
11.2. Low-temperature behavior of an imperfect Bose gas
11.3. Low-lying states of an imperfect Bose gas
11.4. Energy spectrum of a Bose liquid
11.5. States with quantized circulation
11.6. Quantized vortex rings and the breakdown of superfluidity
11.7. Low-lying states of an imperfect Fermi gas
11.8. Energy spectrum of a Fermi liquid: Landau's phenomenological theory
11.9. Condensation in Fermi systems
Problems Phase transitions: criticality, universality, and scaling 12.1. General remarks on the problem of condensation
12.2. Condensation of a van der Waals gas
12.3. A dynamical model of phase transitions
12.4. The lattice gas and the binary alloy
12.5. Ising model in the zeroth approximation
12.6. Ising model in the first approximation
12.7. The critical exponents
12.8. Thermodynamic inequalities
12.9. Landau's phenomenological theory
12.10. Scaling hypothesis for thermodynamic functions
12.11. The role of correlations and fluctuations
12.12. The critical exponents ν and η
12.13. A final look at the mean field theory
Problems Phase transitions: exact (or almost exact) results for various models 13.1. One-dimensional fluid models
13.2. The Ising model in one dimension
13.3. The n-vector models in one dimension
13.4. The Ising model in two dimensions
13.5. The spherical model in arbitrary dimensions
13.6. The ideal Bose gas in arbitrary dimensions
13.7. Other models
Problems Phase transitions: the renormalization group approach 14.1. The conceptual basis of scaling
14.2. Some simple examples of renormalization
14.3. The renormalization group: general formulation
14.4. Applications of the renormalization group
14.5. Finite-size scaling
Problems Fluctuations and nonequilibrium statistical mechanics 15.1. Equilibrium thermodynamic fluctuations
15.2. The Einstein-Smoluchowski theory of the Brownian motion
15.3. The Langevin theory of the Brownian motion
15.4. Approach to equilibrium: the Fokker-Planck equation
15.5. Spectral analysis of fluctuations: the Wiener-Khintchine theorem
15.6. The fluctuation-dissipation theorem
15.7. The Onsager relations
15.8. Exact equilibrium free energy differences from nonequilibrium measurements Computer Simulations 16.1. Introduction and statistics
16.2. Monte Carlo simulations
16.3. Molecular dynamics16.3.
16.4. Particle simulations
16.5. Computer simulation caveats
Problems
Appendices Influence of boundary conditions on the distribution of quantum states Certain mathematical functions “Volume” and “surface area” of an n-dimensional sphere of radius R On Bose-Einstein functions On Fermi-Dirac functions A rigorous analysis of the ideal Bose gas and the onset of Bose-Einstein condensation On Watson functions Thermodynamic relationships Pseudorandom numbers Bibliography
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) www.dappsexplained.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號