注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)希爾伯特空間及應(yīng)用導(dǎo)論(英文版 第3版)

希爾伯特空間及應(yīng)用導(dǎo)論(英文版 第3版)

希爾伯特空間及應(yīng)用導(dǎo)論(英文版 第3版)

定 價:¥139.00

作 者: 〔美〕洛肯納斯·德布納斯(Lokenath Debnath) ,〔波〕皮奧特·米庫辛斯基(Piotr Mikusiński)
出版社: 世界圖書出版公司
叢編項:
標(biāo) 簽: 暫缺

ISBN: 9787523218617 出版時間: 2025-06-01 包裝: 平裝-膠訂
開本: 16開 頁數(shù): 字?jǐn)?shù):  

內(nèi)容簡介

  《希爾伯特空間及應(yīng)用導(dǎo)論(第3版)》是一部深入介紹希爾伯特空間理論及其廣泛應(yīng)用的教材。書中內(nèi)容從內(nèi)積空間和希爾伯特空間的基本概念出發(fā),詳細(xì)闡述了這些空間的幾何性質(zhì)和重要定理。同時,本書還通過豐富的實例和詳盡的解釋,展示了希爾伯特空間在傅里葉分析、積分方程、微分方程和量子力學(xué)等多個領(lǐng)域的實際應(yīng)用。內(nèi)容組織嚴(yán)謹(jǐn),語言簡潔明了,適合數(shù)學(xué)、物理和工程領(lǐng)域的研究生和研究人員閱讀。通過閱讀本書,讀者不僅能夠系統(tǒng)地掌握希爾伯特空間的理論知識,還能將其靈活應(yīng)用于實際問題的解決中。

作者簡介

  洛肯納斯·德布納斯(Lokenath Debnath),一位卓越的印度裔美國數(shù)學(xué)家,現(xiàn)任德克薩斯里奧格蘭德河谷大學(xué)(原德克薩斯泛美大學(xué))數(shù)學(xué)系主任。德布納斯博士在數(shù)學(xué)領(lǐng)域深耕細(xì)作,發(fā)表了數(shù)百篇高質(zhì)量的研究論文和文章,同時撰寫了多部涵蓋廣泛數(shù)學(xué)課題的教科書。此外,他還是國際知名的數(shù)學(xué)期刊《國際數(shù)學(xué)與數(shù)學(xué)科學(xué)雜志》的創(chuàng)辦者,為推動數(shù)學(xué)研究的發(fā)展做出了杰出貢獻(xiàn)。皮奧特·米庫辛斯基(Piotr Mikusiński)畢業(yè)于波蘭科學(xué)學(xué)院數(shù)學(xué)研究所,獲得數(shù)學(xué)博士學(xué)位后,曾在加州大學(xué)圣巴巴拉分校擔(dān)任客座講師。目前,米庫辛斯基教授是佛羅里達(dá)大學(xué)數(shù)學(xué)系的教授,主要研究方向為廣義函數(shù)理論和實分析。

圖書目錄

 
Preface to the Third Edition xi
Preface to the Second Edition xiii
Preface to the First Edition xv
 
CHAPTER 1 Normed Vector Spaces 1
1.1 Introduction 1
1.2 Vector Spaces 2
1.3 Normed Spaces 8
1.4 Banach Spaces 19
1.5 Linear Mappings 25
1.6 Contraction Mappings and the Banach Fixed Point Theorem 32
1.7 Exercises 34
 
CHAPTER 2 The Lebesgue Integral 39
2.1 Introduction 39
2.2 Step Functions 40
2.3 Lebesgue Integrable Functions 45
2.4 The Absolute Value of an Integrable Function 48
2.5 Series of Integrable Functions 50
2.6 Norm in 52
2.7 Convergence Almost Everywhere 55
2.8 Fundamental Convergence Theorems 58
2.9 Locally Integrable Functions 62
2.10 The Lebesgue Integral and the Riemann Integral 64
2.11 Lebesgue Measure on  67
2.12 Complex-Valued Lebesgue Integrable Functions 71
2.13 The Spaces 74
2.14 Lebesgue Integrable Functions on78
2.15 Convolution 82
2.16 Exercises 84
 
CHAPTER 3 Hilbert Spaces and Orthonormal Systems 93
3.1 Introduction 93
3.2 Inner Product Spaces 94
3.3 Hilbert Spaces 99
3.4 Orthogonal and Orthonormal Systems 105
3.5 Trigonometric Fourier Series 122
3.6 Orthogonal Complements and Projections 127
3.7 Linear Functionals and the Riesz Representation Theorem 132
3.8 Exercises 135
 
CHAPTER 4 Linear Operators on Hilbert Spaces 145
4.1 Introduction 145
4.2 Examples of Operators 146
4.3 Bilinear Functionals and Quadratic Forms 151
4.4 Adjoint and Self-Adjoint Operators 158
4.5 Invertible, Normal, Isometric, and Unitary Operators 163
4.6 Positive Operators 168
4.7 Projection Operators 175
4.8 Compact Operators 180
4.9 Eigenvalues and Eigenvectors 186
4.10 Spectral Decomposition 196
4.11 Unbounded Operators 201
4.12 Exercises 211
CHAPTER 5 Applications to Integral and Differential Equations 217
5.1 Introduction 217
5.2 Basic Existence Theorems 218
5.3 Fredholm Integral Equations 224
5.4 Method of Successive Approximations 226
5.5 Volterra Integral Equations 228
5.6 Method of Solution for a Separable Kernel 233
5.7 Volterra Integral Equations of the First Kind and
Abel’s Integral Equation 236
5.8 Ordinary Differential Equations and Differential Operators 239
5.9 Sturm–Liouville Systems 247
5.10 Inverse Differential Operators and Green’s Functions 253
5.11 The Fourier Transform 258
5.12 Applications of the Fourier Transform to Ordinary
Differential Equations and Integral Equations 271
5.13 Exercises 279
 
CHAPTER 6 Generalized Functions and Partial Differential
Equations 287
6.1 Introduction 287
6.2 Distributions 288
6.3 Sobolev Spaces 300
6.4 Fundamental Solutions and Green’s Functions for
Partial Differential Equations 303
6.5 Weak Solutions of Elliptic Boundary Value Problems 323
6.6 Examples of Applications of the Fourier Transform to
Partial Differential Equations 329
6.7 Exercises 343
 
CHAPTER 7 Mathematical Foundations of Quantum Mechanics 351
7.1 Introduction 351
7.2 Basic Concepts and Equations of Classical Mechanics 352
Poisson’s Brackets in Mechanics 361
7.3 Basic Concepts and Postulates of Quantum Mechanics 363
7.4 The Heisenberg Uncertainty Principle 377
7.5 The Schrödinger Equation of Motion 379
7.6 The Schrödinger Picture 395
7.7 The Heisenberg Picture and the Heisenberg Equation
of Motion 401
7.8 The Interaction Picture 405
7.9 The Linear Harmonic Oscillator 407
7.10 Angular Momentum Operators 412
7.11 The Dirac Relativistic Wave Equation 420
7.12 Exercises 423
 
 
 
CHAPTER 8 Wavelets and Wavelet Transforms 433
8.1 Brief Historical Remarks 433
8.2 Continuous Wavelet Transforms 436
8.3 The Discrete Wavelet Transform 444
8.4 Multiresolution Analysis and Orthonormal Bases of
Wavelets 452
8.5 Examples of Orthonormal Wavelets 462
8.6 Exercises 473
 
CHAPTER 9 Optimization Problems and Other Miscellaneous
Applications 477
9.1 Introduction 477
9.2 The Gateaux and Fréchet Differentials 478
9.3 Optimization Problems and the Euler–Lagrange
Equations 490
9.4 Minimization of Quadratic Functionals 505
9.5 Variational Inequalities 507
9.6 Optimal Control Problems for Dynamical Systems 510
9.7 Approximation Theory 517
9.8 The Shannon Sampling Theorem 522
9.9 Linear and Nonlinear Stability 526
9.10 Bifurcation Theory 530
9.11 Exercises 535
 
Hints and Answers to Selected Exercises 547
Bibliography 565
Index 571
 

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) www.dappsexplained.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號