注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)近代應(yīng)用數(shù)學(xué)基礎(chǔ)

近代應(yīng)用數(shù)學(xué)基礎(chǔ)

近代應(yīng)用數(shù)學(xué)基礎(chǔ)

定 價:¥99.00

作 者: 蘇維宜
出版社: 清華大學(xué)出版社
叢編項:
標(biāo) 簽: 暫缺

ISBN: 9787302620822 出版時間: 2024-07-01 包裝: 平裝-膠訂
開本: 16開 頁數(shù): 字?jǐn)?shù):  

內(nèi)容簡介

  本書系統(tǒng)地介紹集合論、近世代數(shù)、點集拓?fù)?、泛函分析、Fourier分析、分布理論、微分幾何等近代應(yīng)用數(shù)學(xué)的基本內(nèi)容,及其在自然科學(xué)領(lǐng)域中的應(yīng)用。書中強調(diào)對近代數(shù)學(xué)基本概念的理解、對重要論證方法的思路分析,以培養(yǎng)讀者掌握并應(yīng)用近代應(yīng)用數(shù)學(xué)工具解決本專業(yè)的實際問題。20世紀(jì)初期至今的百余年中,數(shù)學(xué)科學(xué)與自然科學(xué)諸領(lǐng)域相輔相成,互相促進,彼此滲透,共同發(fā)展,使得數(shù)學(xué)科學(xué)成為當(dāng)今各個科學(xué)領(lǐng)域中不可或缺的重要工具。因此介紹近代應(yīng)用數(shù)學(xué)基本內(nèi)容的教材已成當(dāng)務(wù)之急,本書就起了這樣的重要作用。

作者簡介

  蘇維宜,南京大學(xué)數(shù)學(xué)系教授,博士生導(dǎo)師??蒲兄鞴シ较蚴菙?shù)學(xué)科學(xué)的重要分支——調(diào)和分析與分形分析。發(fā)表學(xué)術(shù)論文百余篇(其中半數(shù)以上發(fā)表在國內(nèi)外SCI期刊上)??蒲袑V?部。完成國家重大基礎(chǔ)研究項目(非線性科學(xué))的子項目(分形分析)一項、國家自然科學(xué)基金面上項目十余項。培養(yǎng)獲數(shù)學(xué)博士學(xué)位的研究生15名、獲碩士學(xué)位的22名。指導(dǎo)博士后7名??蒲谐晒恐?,是國內(nèi)公認(rèn)的本領(lǐng)域的學(xué)術(shù)帶頭人。在國際上有較大影響,多次主辦國內(nèi)外數(shù)學(xué)學(xué)術(shù)會議,并應(yīng)邀作學(xué)術(shù)報告。教學(xué)方面,數(shù)十年中開設(shè)數(shù)學(xué)系基礎(chǔ)課程、專業(yè)課程十余門,主持南京大學(xué)、江蘇省、國家教學(xué)改革項目4項,主持國家精品課程《高等數(shù)學(xué)》十余年。編寫本科生、研究生教材4本。在教育科研戰(zhàn)線上辛勤耕耘52年,愛崗敬業(yè),嚴(yán)謹(jǐn)治學(xué)。教學(xué)精益求精,深受學(xué)生愛戴,2015年榮獲南京大學(xué)教學(xué)終身成就獎。

圖書目錄

Preface
Chapter 1Set,Structure of Operation on Set
1.1Sets,the Relations and Operations between Sets
1.1.1Relations between sets
1.1.2Operations between sets 
1.1.3Mappings between sets
1.2Structures of Operations on Sets
1.2.1Groups,rings,fields,and linear spaces 
1.2.2Group theory,some important groups
1.2.3Subgroups,product groups,quotient groups
Exercise 1
Chapter 2Linear Spaces and Linear Transformations
2.1Linear Spaces 
2.1.1Examples
2.1.2Bases of linear spaces
2.1.3Subspaces and product/directsum/quitient spaces
2.1.4Inner product spaces
2.1.5Dual spaces
2.1.6Structures of linear spaces
2.2Linear Transformations
2.2.1Linear operator spaces
2.2.2Conjugate operators of linear operators
2.2.3Multilinear algebra
Exercise 2
Chapter 3Basic Knowledge of Point Set Topology
3.1Metric Spaces,Normed Linear Spaces
3.1.1Metric spaces
3.1.2Normed linear spaces
3.2Topological Spaces
3.2.1Some definitions in topological spaces
3.2.2Classification of topological spaces
3.3Continuous Mappings on Topological Spaces
3.3.1Mappings between topological spaces,continuity of mappings
3.3.2Subspaces,product spaces,quotient spaces
3.4Important Properties of Topological Spaces
3.4.1Separation axioms of topological spaces
3.4.2Connectivity of topological spaces
3.4.3Compactness of topological spaces
3.4.4Topological linear spaces
Exercise 3
Chapter 4Foundation of Functional Analysis
4.1Metric Spaces
4.1.1Completion of metric spaces
4.1.2Compactness in metric spaces
4.1.3Bases of Banach spaces
4.1.4Orthgoonal systems in Hilbert spaces
4.2Operator Theory
4.2.1Linear operators on Banach spaces
4.2.2Spectrum theory of bounded linear operators
4.3Linear Functional Theory
4.3.1Bounded linear functionals on normed linear spaces
4.3.2Bounded linear functionals on Hilbert spaces
Exercise 4
Chapter 5Distribution Theory
5.1Schwartz Space,Schwartz Distribution Space
5.1.1Schwartz space
5.1.2Schwartz distribution space
5.1.3Spaces ERn,DRn and their distribution spaces
5.2Fourier Transform on LpRn,1≤p≤2 
5.2.1Fourier transformations on L1Rn
5.2.2Fourier transformations on L2Rn
5.2.3Fourier transformations on LpRn,1<><>
5.3Fourier Transform on Schwartz Distribution Space
5.3.1Fourier transformations of Schwartz functions
5.3.2Fourier transformations of Schwartz distributions
5.3.3Schwartz distributions with compact supports
5.3.4Fourier transformations of convolutions of Schwartz distributions
5.4Wavelet Analysis
5.4.1Introduction
5.4.2Continuous wavelet transformations
5.4.3Discrete wavelet transformations
5.4.4Applications of wavelet transformations
Exercise 5
Chapter 6Calculus on Manifolds
6.1Basic Concepts
6.1.1Structures of differential manifolds
6.1.2Cotangent spaces,tangent spaces
6.1.3Submanifolds
6.2External Algebra
6.2.1(r,s)type tensors,(r,s)type tensor spaces
6.2.2Tensor algebra
6.2.3Grassmann algebra (exterior algebra)
6.3Exterior Differentiation of Exterior Differential Forms
6.3.1Tensor bundles and vector bundles
6.3.2Exterior differentiations of exterior differential form
6.4Integration of Exterior Differential Forms
6.4.1Directions of smooth manifolds
6.4.2Integrations of exterior differential forms on directed manifold M
6.4.3Stokes formula
6.5Riemann Manifolds, Mathematics and Modern Physics
6.5.1Riemann manifolds
6.5.2Connections
6.5.3Lie group and movingframe method
6.5.4Mathematics and modern physics
Exercise 6
Chapter 7Complimentary Knowledge
7.1Variational Calculus
7.1.1Variation and variation problems
7.1.2Variation principle
7.1.3More general variation problems
7.2Some Important Theorems in Banach Spaces
7.2.1StoneWeierstrass theorems
7.2.2Implicit and inversemapping theorems
7.2.3Fixed point theorems
7.3Haar Integrals on Locally Compact Groups
Exercise 7
References
Index
 

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) www.dappsexplained.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號