注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)邊界積分:微分方程方法的數(shù)學(xué)基礎(chǔ)(英文版)

邊界積分:微分方程方法的數(shù)學(xué)基礎(chǔ)(英文版)

邊界積分:微分方程方法的數(shù)學(xué)基礎(chǔ)(英文版)

定 價(jià):¥149.00

作 者: 韓厚德、殷東生
出版社: 清華大學(xué)出版社
叢編項(xiàng):
標(biāo) 簽: 暫缺

購(gòu)買這本書可以去


ISBN: 9787302664734 出版時(shí)間: 2024-07-01 包裝: 精裝
開本: 16開 頁(yè)數(shù): 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  《邊界積分-微分方程方法的數(shù)學(xué)基礎(chǔ)(英文版)》主要討論邊界積分-微分方程的數(shù)學(xué)基礎(chǔ)理論,主要聚焦于把傳統(tǒng)的邊界積分方程中的超奇異積分轉(zhuǎn)化為帶弱奇性的邊界積分-微分方程?!哆吔绶e分-微分方程方法的數(shù)學(xué)基礎(chǔ)(英文版)》簡(jiǎn)要介紹了分布理論,而邊界積分方程方法基于線性偏微分方程的基本解,所以對(duì)微分方程的基本解做了較為詳細(xì)的介紹。在余下的章節(jié)里,依次討論了拉普拉斯(Laplace)方程、亥姆霍茲(Helmholtz)方程、納維(Navier)方程組、斯托克斯(Stokes)方程等的邊界積分-微分方程方法和理論;還討論了某系非線性方程,如:熱輻射、變分不等式和斯捷克洛夫(Steklov)特征值問題的邊界積分-微分方程理論。最后,討論了有限元和邊界元的對(duì)稱耦合問題。

作者簡(jiǎn)介

  韓厚德,清華大學(xué)教授,長(zhǎng)期從事計(jì)算數(shù)學(xué)研究工作。在有限元方法、無(wú)限元方法、邊界元方法以及無(wú)界區(qū)域上偏微分方程的數(shù)值解等領(lǐng)域取得了一系列的重要研究成果。曾獲得國(guó)家科學(xué)大會(huì)獎(jiǎng)(1978),國(guó)家二等獎(jiǎng)(1988)和一等獎(jiǎng)(1995),北京市科技進(jìn)步二等獎(jiǎng)(2002),Hermker獎(jiǎng)(2008),國(guó)家自然科學(xué)二等獎(jiǎng)(2008)等多項(xiàng)獎(jiǎng)勵(lì)。殷東生,清華大學(xué)副教授,主要研究方向?yàn)楦哳l波、無(wú)界域上的偏微分方程和分?jǐn)?shù)階微分方程。

圖書目錄

Chapter 1  Distributions  1
1.1  Space of Test Functions  2
1.2  Definition of Distributions and Their Operations  3
1.3  Direct Products and Convolution of Distributions  8
1.4  Tempered Distributions and Fourier Transform  11
References  15
Chapter 2  Fundamental Solutions of Linear Differential Operators  16
2.1  Definition of Fundamental Solution  16
2.2  Elliptic Operators  19
2.2.1  Laplace Operator  19
2.2.2  Helmholtz Operator  20
2.2.3  Biharmonic Operator  24
2.3  Transient Operator  25
2.3.1  Heat Conduction Operator  25
2.3.2  Schr?dinger Operator  26
2.3.3  Wave Operator  27
2.4  Matrix Operator  28
2.4.1  Steady-State Navier Operator  29
2.4.2  Harmonic Navier Operator  33
2.4.3  Steady-State Stokes Operator  37
2.4.4  Steady-State Oseen Operator  40
References  43
Chapter 3  Boundary Value Problems of the Laplace Equation  44
3.1  Function Spaces  44
3.1.1  Continuous and Continuously Differential Function Spaces  44
3.1.2  H?lder Spaces  45
3.1.3  The Spaces   46
3.1.4  Sobolev Spaces  47
3.2  The Dirichlet and Neumann Problems of the Laplace Equation  49
3.2.1  Classical Solutions  50
3.2.2  Generalized Solutions and Variational Problems  52
3.3  Single Layer and Double Layer Potentials  54
3.3.1  Weakly Singular Integral Operators on  55
3.3.2  Double Layer Potentials  56
3.3.3  Single Layer Potentials  62
3.3.4  The Derivatives of Single Layer Potentials  64
3.3.5  The Derivatives of Double Layer Potentials  67
3.3.6  The Single and Double Layer Potentials in Sobolev Spaces  70
3.4  Boundary Reduction  73
3.4.1  Boundary Integral (Integro-Differential) Equations of the First Kind  73
3.4.2  Solvability of First Kind Integral Equation with n=2 and the Degenerate 
Scale  79
3.4.3  Boundary Integral Equations of the Second Kind  84
References  93
Chapter 4  Boundary Value Problems of Modified Helmholtz Equation  95
4.1  The Dirichlet and Neumann Boundary Problems of Modified Helmholtz Equation  95
4.2  Single and Double Layer Potentials of Modified Helmholtz
Operator for the Continuous Densities  98
4.3  Single Layer Potential  and Double Layer Potential  
in Soblov Spaces  106
4.4  Boundary Reduction for the Boundary Value Problems of Modified
Helmholtz Equation  115
4.4.1  Boundary Integral Equation and Integro-Differential Equation of
the First Kind  115
4.4.2  Boundary Integral Equations of the Second Kind  118
References  125
Chapter 5  Boundary Value Problems of Helmholtz Equation  127
5.1  Interior and Exterior Boundary Value Problems of Helmholtz Equation  128
5.2  Single and Double Layers Potentials of Helmholtz Equation  133
5.2.1  Single Layer Potential   136
5.2.2  The Double Layer Potential  142
5.3  Boundary Reduction for the Principal Boundary Value Problems
of Helmholtz Equation  149
5.3.1  Boundary Integral Equation of the First Kind  151
5.3.2  Boundary Integro-Differential Equations of the First Kind  156
5.3.3  Boundary Integral Equations of the Second Kind  162
5.3.4  Modified Integral and Integro-Differential Equations  176
5.4  The Boundary Integro-Differential Equation Method for Interior
Dirichlet and Neumann Eigenvalue Problems of Laplace Operator  179
5.4.1  Interior Dirichlet Eigenvalue Problems of Laplace Operator  179
5.4.2  Interior Neuamann Eigenvalue Problem of Laplace Operator  182
References  185
Chapter 6  Boundary Value Problems of the Navier Equations  186
6.1  Some Basic Boundary Value Problems  186
6.2  Single and Double Layer Potentials of the Navier System  191
6.2.1  Single Layer Potential   191
6.2.2  Double Layer Potential  192
6.2.3  The Derivatives of the Single Layer Potential   195
6.2.4  The Derivatives of the Double Layer Potential   197
6.2.5  The Layer Potentials  and  in Sobolev Spaces  202
6.3  Boundary Reduction for the Boundary Value Problems of the Navier System  204
6.3.1  First Kind Integral (Differential-integro-differential) Equations of
the Boundary Value Problems of the Navier System  205
6.3.2  Solvability of the First Kind Integral Equations with n = 2 and
the Degenerate Scales  212
6.3.3  The Second Kind Integral Equations of the Boundary Value
Problems of the Navier System  218
References  225
Chapter 7  Boundary Value Problems of the Stokes Equations  227
7.1  Principal Boundary Value Problems of Stokes equations  227
7.2  Single Layer Potential and Double Layer Potential of Stokes Operator  234
7.3  Boudary Reduction of the Boundary Value Problems of Stokes Equations  243
References  247
Chapter 8  Some Nonlinear Problems  248
8.1  Heat Radiation Problems  248
8.1.1  Boundary Condition of Nonlinear Boundary Problem (8.1.1)  249
8.1.2  Equivalent Formula of Problem (8.1.1)  250
8.1.3  Equivalent Saddle-point Problem  255
8.1.4  The Numerical Solutions of Nonlinear Boundary   
Variational Problem (8.1.17)  257
8.2  Variational Inequality (I)-Laplace Equation with Unilateral
 Boundary Conditions  259
8.2.1  Equivalent Boundary Variational Inequality of Problem (8.2.2)  260
8.2.2  Abstract Error Estimate of the Numerical Solution of
Boundary Variational Inequality (8.2.9)  262
8.3  Variational Inequality (II)-Signorini Problems in Linear Elasticity  264
8.3.1  Signorini Problems in Linear Elasticity  264
8.3.2  An Equivalent Boundary Variational Inequality of Problem (8.3.3)  265
8.4  Steklov Eigenvalue Problems  268
8.4.1  The Boundary Reduction of Steklov Eigenvalue Problem  270
8.4.2  The Numerical Solutions of Steklov Eigenvalue Problem Based
on the Variational Form (8.4.13)  272
8.4.3  The Error Estimate of Numerical Solution of Steklov
Eigenvalue Problem  273
References  282
Chapter 9   Coercive and Symmetrical Coupling Methods of Finite
 Element Method and Boundary Element Method  285
9.1  Exterior Dirichelet Problem of Poisson's Equation (I)   286
9.1.1  The Symmetric and Coercive Coupling Formula of Problem (9.1.1)  286
9.1.2  The Numerical Solutions of Problem (9.1.1) Based on the
Symmetric and Coercive Coupling Formula  291
9.2  Exterior Dirichlet Problem of Poisson Equation (II)  292
9.3  An Exterior Displacement Problem of Nonhomogeneous Navier System  298
9.3.1  The Coercive and Symmetrical Variational Formulation
of Problem (9.3.1) on Bounded Domain  298
9.3.2  The Discrete Approximation of Problem (9.3.19) and (9.3.20)  303
References  304
 

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) www.dappsexplained.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)