注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當前位置: 首頁出版圖書科學技術計算機/網(wǎng)絡人工智能人工智能算法與實戰(zhàn):微課視頻版(Python+PyTorch)

人工智能算法與實戰(zhàn):微課視頻版(Python+PyTorch)

人工智能算法與實戰(zhàn):微課視頻版(Python+PyTorch)

定 價:¥59.90

作 者: 于祥雨,李旭靜,邵新平 著
出版社: 清華大學出版社
叢編項: 大數(shù)據(jù)與人工智能技術叢書
標 簽: 暫缺

購買這本書可以去


ISBN: 9787302557821 出版時間: 2020-09-01 包裝: 平裝
開本: 16 頁數(shù): 208 字數(shù):  

內(nèi)容簡介

  本書可視為一本以問題為導向的書籍, 非常適合具備一定數(shù)據(jù)基礎和Python基礎的讀者學習,作為一本數(shù)據(jù)科學的基礎書籍,讀者可以在短時間內(nèi)學習數(shù)據(jù)科學的經(jīng)典算法。主要闡述 python3 基礎內(nèi)容;常用模塊進行扼要闡述和實例操作;常見統(tǒng)計量, 數(shù)據(jù)轉(zhuǎn)換, 以及多維數(shù)組等內(nèi)容, 并通過代碼實現(xiàn); 特色是以問題導向的方式闡述了常見的 12 種經(jīng)典算法;并介紹了 pytorch 的相關內(nèi)容, 并扼要闡述了深度學習中幾種經(jīng)典的神經(jīng)網(wǎng)絡算法, 以及 pytorch 實現(xiàn)經(jīng)典的神經(jīng)網(wǎng)絡算法。

作者簡介

  于祥雨, 算法工程師, 杭州師范大學理學碩士, 長期從事于數(shù)據(jù)分析, 機器學習和人工智能等領域. 擅長 Python3 編程, 機器學習以及圖像分類等問題.參與國家自然基金 1 項.

圖書目錄

第1章準備工作

1.1Python的安裝

1.1.1簡介

1.1.2安裝

1.1.3常用模塊

1.1.4虛擬環(huán)境

1.2基礎知識

1.2.1認識 Python

1.2.2數(shù)據(jù)類型

1.2.3數(shù)據(jù)結構

1.2.4條件判斷

1.2.5循環(huán)

1.2.6實例

1.3Notebook開發(fā)環(huán)境

1.3.1搭建Jupyter

1.3.2搭建Jupyterlab

1.4本章小結

第2章科學計算庫

2.1NumPy

2.1.1構建數(shù)組

2.1.2數(shù)組運算

2.1.3函數(shù)運算

2.1.4文件存取

2.2SymPy

2.3SciPy

2.3.1非線性方程組

2.3.2最小二乘

2.3.3插值

2.4pandas

2.4.1Series

2.4.2dataframe

2.4.3日平均線

2.4.4數(shù)據(jù)存取

2.5Matplotlib

2.5.1二維圖形

2.5.2三維圖形

2.6本章小結





第3章描述性分析

3.1數(shù)據(jù)

3.2基本統(tǒng)計量

3.2.1平均數(shù)

3.2.2最值

3.2.3中位數(shù)

3.2.4眾數(shù)

3.2.5極差

3.2.6方差

3.2.7變異系數(shù)

3.2.8協(xié)方差

3.2.9相關系數(shù)

3.3數(shù)據(jù)轉(zhuǎn)換

3.3.1中心化

3.3.2minmax標準化

3.3.3BoxCox轉(zhuǎn)換

3.3.4log函數(shù)轉(zhuǎn)換

3.3.5zscore標準化

3.4常見距離

3.4.1閔氏距離

3.4.2余弦值相似度

3.5多維數(shù)據(jù)

3.5.1矩陣

3.5.2特征值和特征向量

3.5.3多重共線性

3.6學生基本信息實例

3.7本章小結

第4章經(jīng)典算法

4.1線性回歸

4.1.1思想方法

4.1.2線性回歸算法步驟

4.1.3實例

4.2邏輯回歸

4.2.1算法思想

4.2.2步驟

4.2.3實例

4.3主成分分析

4.3.1算法思想

4.3.2步驟

4.3.3實例

4.4線性判別分析

4.4.1算法思想

4.4.2步驟

4.4.3實例

4.5決策樹

4.5.1算法思想

4.5.2步驟

4.5.3實例

4.6隨機森林

4.6.1算法思想

4.6.2實例

4.7集成學習

4.7.1Bagging

4.7.2Boosting

4.7.3Stacking

4.8樸素貝葉斯

4.8.1算法思想

4.8.2步驟

4.8.3實例

4.9k最近鄰算法

4.9.1算法思想

4.9.2步驟

4.9.3實例

4.10kmeans聚類

4.10.1算法思想

4.10.2算法步驟

4.10.3實例

4.11推薦算法

4.11.1算法思想

4.11.2基于用戶的協(xié)同過濾

4.11.3步驟

4.11.4基于內(nèi)容的協(xié)同過濾

4.11.5總結

4.12SVD

4.12.1步驟

4.12.2實例

4.13本章小結

第5章深度學習

5.1PyTorch

5.1.1PyTorch安裝

5.1.2創(chuàng)建tensor

5.1.3基本運算

5.1.4矩陣運算

5.2基礎知識

5.2.1蒙特卡洛法

5.2.2梯度下降法

5.2.3封裝實現(xiàn)

5.2.4激活函數(shù)

5.2.5softmax

5.3前饋神經(jīng)網(wǎng)絡

5.3.1思想原理

5.3.2手寫體識別實例

5.4卷積神經(jīng)網(wǎng)絡

5.4.1核函數(shù)

5.4.2池化層

5.4.3LeNet

5.4.4AlexNet

5.4.5ResNet

5.4.6GoogLeNet

5.4.7垃圾分類實例

5.5生成對抗網(wǎng)絡

5.5.1思想原理

5.5.2對抗網(wǎng)絡實例

5.6其他神經(jīng)網(wǎng)絡

5.6.1循環(huán)神經(jīng)網(wǎng)絡

5.6.2風格遷移神經(jīng)網(wǎng)絡

5.7本章小結

參考文獻

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) www.dappsexplained.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號