注冊(cè) | 登錄讀書(shū)好,好讀書(shū),讀好書(shū)!
讀書(shū)網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書(shū)科學(xué)技術(shù)自然科學(xué)自然科學(xué)總論知識(shí)圖譜的自然語(yǔ)言查詢(xún)和關(guān)鍵詞查詢(xún)

知識(shí)圖譜的自然語(yǔ)言查詢(xún)和關(guān)鍵詞查詢(xún)

知識(shí)圖譜的自然語(yǔ)言查詢(xún)和關(guān)鍵詞查詢(xún)

定 價(jià):¥58.00

作 者: 胡新 著
出版社: 電子工業(yè)出版社
叢編項(xiàng):
標(biāo) 簽: 暫缺

購(gòu)買(mǎi)這本書(shū)可以去


ISBN: 9787121354298 出版時(shí)間: 2019-11-01 包裝: 平裝
開(kāi)本: 其他 頁(yè)數(shù): 136 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  知識(shí)圖譜的自然語(yǔ)言查詢(xún)和關(guān)鍵詞查詢(xún)是知識(shí)問(wèn)答中較有前景的兩種知識(shí)圖譜查詢(xún)方式。知識(shí)圖譜是一種結(jié)構(gòu)化的語(yǔ)義知識(shí)庫(kù),以圖的方式展現(xiàn)“實(shí)體”、實(shí)體的“屬性”,以及實(shí)體與實(shí)體之間的“關(guān)系”。知識(shí)圖譜的自然語(yǔ)言查詢(xún)和關(guān)鍵詞查詢(xún),使搜索引擎不僅能返回與查詢(xún)相關(guān)的網(wǎng)頁(yè),而且能返回智能化的答案。本書(shū)介紹知識(shí)圖譜的自然語(yǔ)言查詢(xún)和關(guān)鍵詞查詢(xún),包括自然語(yǔ)言查詢(xún)中的語(yǔ)義關(guān)系識(shí)別、自然語(yǔ)言聚集查詢(xún)、SPARQL 和關(guān)鍵詞相結(jié)合的自然語(yǔ)言查詢(xún)、關(guān)鍵詞查詢(xún)等。本書(shū)可供高等院校計(jì)算機(jī)、人工智能、大數(shù)據(jù)等相關(guān)專(zhuān)業(yè)研究生和高年級(jí)本科生參考閱讀,也可供知識(shí)工程領(lǐng)域的技術(shù)人員參考閱讀。

作者簡(jiǎn)介

  胡新,博士,長(zhǎng)江師范學(xué)院大數(shù)據(jù)與智能工程學(xué)院講師,長(zhǎng)江師范學(xué)院高層次人才引進(jìn)項(xiàng)目 知識(shí)圖譜問(wèn)答中的自然語(yǔ)言查詢(xún)”負(fù)責(zé)人

圖書(shū)目錄

章 緒論·································.1
1.1 研究背景及意義··················.1
1.2 研究現(xiàn)狀···························.3
1.2.1 知識(shí)圖譜自然語(yǔ)言查詢(xún)的
研究現(xiàn)狀························3
1.2.2 知識(shí)圖譜關(guān)鍵詞查詢(xún)的
研究現(xiàn)狀························4
1.3 存在的關(guān)鍵問(wèn)題··················.5
1.4 研究?jī)?nèi)容及創(chuàng)新點(diǎn)···············.7
1.5 本書(shū)組織結(jié)構(gòu)·····················10
第2 章 自然語(yǔ)言查詢(xún)和關(guān)鍵詞查詢(xún)的
相關(guān)研究···························12
2.1 知識(shí)圖譜的自然語(yǔ)言查詢(xún)······12
2.1.1 語(yǔ)義關(guān)系識(shí)別················.12
2.1.2 自然語(yǔ)言聚集查詢(xún)···········.13
2.1.3 查詢(xún)映射·····················.14
2.1.4 多樣化的自然語(yǔ)言查詢(xún)······.15
2.2 知識(shí)圖譜的關(guān)鍵詞查詢(xún)·········16
2.2.1 模式圖························.16
2.2.2 多樣化的關(guān)鍵詞查詢(xún)········.17
2.3 兩種查詢(xún)共用的基礎(chǔ)技術(shù)······19
2.3.1 實(shí)體識(shí)別和實(shí)體鏈接········.19
2.3.2 解釋詞典·····················.19
2.4 眾包—輔助語(yǔ)義關(guān)系識(shí)別規(guī)則
挖掘·································20
2.5 知識(shí)圖譜的其他非結(jié)構(gòu)化
查詢(xún)方式···························21
2.5.1 交互式查詢(xún)···················.21
2.5.2 實(shí)例查詢(xún)和樣例查詢(xún)········.22
第3 章 基于眾包的自然語(yǔ)言查詢(xún)中
語(yǔ)義關(guān)系識(shí)別規(guī)則挖掘·········23
3.1 問(wèn)題描述及創(chuàng)新點(diǎn)···············23
3.2 眾包模型···························24
3.2.1 迭代模型和并行模型········.25
3.2.2 迭代式并行模型和
并行式迭代模型·············.25
3.2.3 帶反饋的并行式迭代模型···.26
3.3 生成語(yǔ)義關(guān)系數(shù)據(jù)集和
依賴(lài)結(jié)構(gòu)數(shù)據(jù)集··················27
3.3.1 眾包模型標(biāo)記語(yǔ)義關(guān)系·····.27
3.3.2 Stanford Parser 生成依賴(lài)
結(jié)構(gòu)··························.27
3.4 挖掘語(yǔ)義關(guān)聯(lián)規(guī)則···············28
3.4.1 挖掘語(yǔ)義關(guān)聯(lián)規(guī)則的算法···.28
3.4.2 算法MSAR 的復(fù)雜度·······.30
3.5 實(shí)驗(yàn)結(jié)果及分析—眾包模型··31
3.5.1 實(shí)驗(yàn)數(shù)據(jù)及評(píng)估標(biāo)準(zhǔn)········.31
3.5.2 迭代模型和并行模型········.32
3.5.3 迭代式并行模型和并行式
迭代模型·····················.33
3.5.4 帶反饋的并行式迭代模型···.35
3.6 實(shí)驗(yàn)結(jié)果及分析—語(yǔ)義關(guān)聯(lián)
規(guī)則·································36
3.7 語(yǔ)義關(guān)系識(shí)別·····················38
3.7.1 語(yǔ)義關(guān)系識(shí)別的算法········.38
3.7.2 算法SRR 的復(fù)雜度··········.39
3.7.3 實(shí)驗(yàn)結(jié)果及分析—語(yǔ)義關(guān)系
識(shí)別··························.39
3.8 本章小結(jié)···························40
第4 章 知識(shí)圖譜的自然語(yǔ)言聚集
查詢(xún)·································42
4.1 問(wèn)題描述及創(chuàng)新點(diǎn)···············42
4.2 查詢(xún)流程···························45
4.3 查詢(xún)理解···························45
4.3.1 意圖解釋·····················.45
4.3.2 依賴(lài)結(jié)構(gòu)分類(lèi)················.46
4.3.3 從依賴(lài)結(jié)構(gòu)中識(shí)別意圖解釋·.47
4.3.4 查詢(xún)理解的優(yōu)化·············.49
4.3.5 算法AIII 的復(fù)雜度··········.49
4.4 構(gòu)建基本圖模式··················50
4.4.1 擴(kuò)展的解釋詞典ED ·········.50
4.4.2 短語(yǔ)映射·····················.51
4.4.3 謂詞-類(lèi)型鄰近集PT ·········.51
4.4.4 謂詞-謂詞鄰近集PP ·········.53
4.4.5 語(yǔ)義關(guān)系映射················.53
4.4.6 算法SRM 的復(fù)雜度·········.55
4.4.7 構(gòu)建基本圖模式BGP········.56
4.4.8 算法BBGP 的復(fù)雜度········.57
4.5 將基本圖模式翻譯為
SPARQL 語(yǔ)句·····················58
4.5.1 數(shù)值型謂詞···················.58
4.5.2 翻譯基本圖模式·············.59
4.5.3 翻譯聚集·····················.59
4.5.4 算法TA 的復(fù)雜度···········.61
4.6 實(shí)驗(yàn)結(jié)果及分析··················61
4.6.1 實(shí)驗(yàn)數(shù)據(jù)集···················.61
4.6.2 各階段的優(yōu)化能力···········.61
4.6.3 算法的有效性················.63
4.6.4 與現(xiàn)有算法對(duì)比·············.65
4.6.5 回答錯(cuò)誤的原因·············.66
4.7 相關(guān)問(wèn)題及解決方案············67
4.8 本章小結(jié)···························69
第5 章 知識(shí)圖譜的自然語(yǔ)言查詢(xún)—
SPARQL 和關(guān)鍵詞··············70
5.1 問(wèn)題描述及創(chuàng)新點(diǎn)···············70
5.2 查詢(xún)流程···························71
5.3 SPARQL 語(yǔ)句的生成過(guò)程······72
5.4 查詢(xún)分解···························73
5.4.1 查詢(xún)理解階段················.73
5.4.2 查詢(xún)映射階段················.74
5.4.3 執(zhí)行SPARQL 階段··········.74
5.4.4 查詢(xún)分解算法················.75
5.4.5 算法DQ 的復(fù)雜度···········.76
5.5 構(gòu)建關(guān)鍵詞索引··················77
5.5.1 算法QUKI ···················.77
5.5.2 算法QUKI 的復(fù)雜度········.78
5.6 聚合SPARQL 結(jié)果子圖和
關(guān)鍵詞查詢(xún)························78
5.6.1 算法CSK ····················.78
5.6.2 算法CSK 的復(fù)雜度·········.80
5.7 實(shí)驗(yàn)結(jié)果及分析··················81
5.7.1 算法的有效性················.81
5.7.2 回答正確的原因·············.83
5.7.3 回答錯(cuò)誤的原因·············.84
5.7.4 以SPARQL 查詢(xún)?yōu)橹鲗?dǎo)的
優(yōu)勢(shì)··························.85
5.7.5 關(guān)鍵詞索引的效率···········.85
5.8 本章小結(jié)···························86
第6 章 知識(shí)圖譜的關(guān)鍵詞聚集查詢(xún)···88
6.1 問(wèn)題描述及創(chuàng)新點(diǎn)···············88
6.2 查詢(xún)流程···························90
6.3 構(gòu)建類(lèi)型-謂詞圖·················90
6.3.1 關(guān)系提取·····················.90
6.3.2 關(guān)系標(biāo)準(zhǔn)化··················.91
6.3.3 類(lèi)型-謂詞圖··················.92
6.4 查詢(xún)理解···························92
6.5 基于類(lèi)型-謂詞圖構(gòu)建
查詢(xún)圖······························94
6.5.1 查詢(xún)圖························.94
6.5.2 構(gòu)建查詢(xún)圖··················.94
6.5.3 算法BQG 的復(fù)雜度·········.99
6.6 將查詢(xún)圖翻譯為SPARQL
語(yǔ)句·································99
6.6.1 數(shù)值型謂詞···················.99
6.6.2 翻譯一般路徑················.99
6.6.3 翻譯聚集·····················100
6.6.4 算法TQGS 的復(fù)雜度········102
6.7 實(shí)驗(yàn)結(jié)果及分析···············.102
6.7.1 算法的有效性················102
6.7.2 輸入的可擴(kuò)展性·············104
6.7.3 數(shù)據(jù)集的可擴(kuò)展性···········106
6.7.4 組件的有效性················106
6.8 本章小結(jié)························.108
第7 章 總結(jié)與展望·····················.109
7.1 總結(jié)······························.109
7.2 展望······························.111
參考文獻(xiàn)····································.112

本目錄推薦

掃描二維碼
Copyright ? 讀書(shū)網(wǎng) www.dappsexplained.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)