注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書人文社科社會科學(xué)統(tǒng)計學(xué)Minitab應(yīng)用統(tǒng)計分析

Minitab應(yīng)用統(tǒng)計分析

Minitab應(yīng)用統(tǒng)計分析

定 價:¥69.00

作 者: 夏龍 著
出版社: 電子工業(yè)出版社
叢編項: 統(tǒng)計分析系列
標(biāo) 簽: 暫缺

購買這本書可以去


ISBN: 9787121377426 出版時間: 2020-01-01 包裝: 平裝
開本: 16開 頁數(shù): 455 字?jǐn)?shù):  

內(nèi)容簡介

  隨著大數(shù)據(jù)時代的來臨,統(tǒng)計分析已經(jīng)成為社會經(jīng)濟(jì)生活中的必備能力。《Minitab應(yīng)用統(tǒng)計分析》以Minitab18.1為統(tǒng)計工具,詳細(xì)介紹了應(yīng)用統(tǒng)計中的描述統(tǒng)計,概率、分布與模擬,單樣本的估計和檢驗(yàn),雙樣本的統(tǒng)計推斷,基礎(chǔ)統(tǒng)計方法的拓展,方差分析,回歸分析,經(jīng)典統(tǒng)計的替代與補(bǔ)充,多元統(tǒng)計分析,時間序列分析與預(yù)測及質(zhì)量管理中的統(tǒng)計方法。本書的資源豐富,書中共包含了近300個案例,網(wǎng)絡(luò)資源中還包括案例的全部數(shù)據(jù)和視頻教程,讀者可以通過書中的操作指令和網(wǎng)站上的視頻教程運(yùn)行本書所有案例的程序,學(xué)習(xí)起來非常方便。《Minitab應(yīng)用統(tǒng)計分析》可以作為高等院校自然科學(xué)和社會科學(xué)本??茖W(xué)生、研究生的教學(xué)用書或?qū)嶒?yàn)教材,也可以作為社會上統(tǒng)計軟件的培訓(xùn)教材,同時還可以作為實(shí)際工作者的統(tǒng)計工具書和質(zhì)量管理人員的統(tǒng)計參考書。

作者簡介

  夏龍,男,1978年生,陜西安康人,博士,副教授。1996年考入西安交通大學(xué),2004年碩士畢業(yè)后分配至北京農(nóng)學(xué)院,其間考入西安交通大學(xué)攻讀博士,2014年獲應(yīng)用經(jīng)濟(jì)學(xué)博士學(xué)位,現(xiàn)系北京農(nóng)學(xué)院城鄉(xiāng)發(fā)展學(xué)院教學(xué)副院長。從教14年以來,先后為本科教授經(jīng)濟(jì)學(xué)、統(tǒng)計學(xué)、計量經(jīng)濟(jì)學(xué)等課程,為研究生教授中級微觀經(jīng)濟(jì)學(xué),教學(xué)上酷愛撰寫講義,注重教學(xué)改革,提倡教學(xué)方法的變革,先后副主編或參編各類省部級規(guī)劃教材6本,2018年獲批農(nóng)業(yè)部十三規(guī)劃教材《計量經(jīng)濟(jì)學(xué)與stata實(shí)訓(xùn)教程》,正在撰寫中??蒲猩铣袚?dān)北京市社科基金一般項目、北京市教委社科計劃面上項目各1項,發(fā)表論文20余篇,其中CSSCI論文5篇,1篇被人大復(fù)印資料全文索引,出版專著1本,20萬字。

圖書目錄

目 錄

第1章 Minitab與應(yīng)用統(tǒng)計\t1
1.1 概述\t1
1.2 Minitab基礎(chǔ)\t1
1.2.1 窗口介紹\t2
1.2.2 簡單示例與本書約定\t3
1.3 主要統(tǒng)計概念\t6
1.3.1 一個調(diào)查\t6
1.3.2 變量的測量尺度與變量類型\t7
1.3.3 變量的關(guān)系\t9
1.3.4 數(shù)據(jù)的預(yù)處理\t9
1.3.5 其他概念\t12
1.4 利用Minitab自學(xué)統(tǒng)計\t13
第2章 描述統(tǒng)計\t15
2.1 單變量的圖表方法\t15
2.1.1 一個品質(zhì)變量\t15
2.1.2 一個數(shù)值變量\t18
2.2 雙變量的圖表方法\t23
2.2.1 兩個品質(zhì)變量\t23
2.2.2 品質(zhì)變量與數(shù)值變量\t27
2.2.3 兩個數(shù)值變量\t30
2.3 三變量的圖表方法\t32
2.3.1 三個品質(zhì)變量\t32
2.3.2 三個數(shù)值變量\t34
2.4 數(shù)值變量的數(shù)值方法\t36
2.4.1 數(shù)值變量的數(shù)值方法概述\t36
2.4.2 一個數(shù)值變量\t36
2.4.3 兩個數(shù)值變量\t46
第3章 概率、分布與模擬\t50
3.1 基本概念\t50
3.1.1 概率\t50
3.1.2 隨機(jī)變量與分布\t51
3.1.3 理論分布\t54
3.2 離散型概率分布\t55
3.2.1 離散型均勻分布\t55
3.2.2 二項分布\t55
3.2.3 泊松分布\t57
3.3 連續(xù)型概率分布\t58
3.3.1 均勻分布\t58
3.3.2 指數(shù)分布\t59
3.3.3 正態(tài)分布\t61
3.4 其他連續(xù)型分布\t63
3.4.1 ?2分布\t63
3.4.2 t分布\t64
3.4.3 F分布\t65
3.5 概率、累積概率和逆累積概率的計算\t66
3.5.1 計算的類型和方法\t66
3.5.2 利用Minitab計算概率、累積概率和
逆概率\t68
3.6 樣本分布與模擬\t76
3.6.1 樣本分布與抽樣概述\t76
3.6.2 簡單隨機(jī)抽樣\t76
3.6.3 正態(tài)分布模擬\t77
3.7 抽樣分布與模擬\t80
3.7.1 推斷統(tǒng)計與抽樣分布\t80
3.7.2 抽樣分布模擬\t83
第4章 單樣本的估計和檢驗(yàn)\t87
4.1 估計的概念與類型\t87
4.1.1 估計的概念\t87
4.1.2 單樣本區(qū)間估計的類型\t88
4.2 單樣本的區(qū)間估計\t89
4.2.1 總體標(biāo)準(zhǔn)差 ? 已知時,總體均值 ? 的
區(qū)間估計\t89
4.2.2 總體標(biāo)準(zhǔn)差 ? 未知時,總體均值 ? 的
區(qū)間估計\t94
4.2.3 總體比例 ? 的區(qū)間估計\t97
4.2.4 總體方差 ?2(標(biāo)準(zhǔn)差 ?)的
區(qū)間估計\t99
4.2.5 總體均值與總體方差的區(qū)間估計
應(yīng)用\t102
4.3 樣本容量的計算\t103
4.4 假設(shè)檢驗(yàn)的概念與類型\t105
4.4.1 假設(shè)檢驗(yàn)的概念與P值法\t105
4.4.2 三種類型的假設(shè)檢驗(yàn)\t106
4.4.3 兩種形式的假設(shè)檢驗(yàn)\t107
4.5 單樣本的假設(shè)檢驗(yàn)\t109
4.5.1 總體標(biāo)準(zhǔn)差 ? 已知時,總體均值 ? 的
假設(shè)檢驗(yàn)\t109
4.5.2 總體標(biāo)準(zhǔn)差 ? 未知時,總體均值 ? 的
假設(shè)檢驗(yàn)\t114
4.5.3 總體比例 ? 的假設(shè)檢驗(yàn)\t117
4.5.4 總體方差 ?2(標(biāo)準(zhǔn)差 ?)的假設(shè)
檢驗(yàn)\t119
4.6 功效檢驗(yàn)\t122
第5章 雙樣本的統(tǒng)計推斷\t126
5.1 雙樣本統(tǒng)計推斷的基礎(chǔ)知識\t126
5.1.1 雙樣本統(tǒng)計推斷概述\t126
5.1.2 雙樣本統(tǒng)計推斷的類型\t127
5.2 雙樣本的統(tǒng)計推斷\t128
5.2.1 總體均值之差?1??2的統(tǒng)計推斷:兩總體的標(biāo)準(zhǔn)差?1和?2已知時的獨(dú)立
樣本\t128
5.2.2 總體均值之差?1??2的統(tǒng)計推斷:兩總體的標(biāo)準(zhǔn)差?1和?2未知時的獨(dú)立
樣本\t133
5.2.3 總體均值之差?1??2的統(tǒng)計推斷:
配對樣本\t136
5.2.4 總體比例之差 ?1??2 的統(tǒng)計推斷\t140
5.2.5 總體方差(標(biāo)準(zhǔn)差)之比
(?1/?2)的統(tǒng)計推斷\t145
5.3 Minitab中樣本數(shù)據(jù)的存儲方式\t148
5.3.1 樣本數(shù)據(jù)存儲方式概述\t148
5.3.2 堆疊數(shù)據(jù)與非堆疊數(shù)據(jù)的轉(zhuǎn)換方式\t149
5.3.3 利用非堆疊數(shù)據(jù)進(jìn)行統(tǒng)計推斷\t150
第6章 基礎(chǔ)統(tǒng)計方法的拓展\t152
6.1 假設(shè)檢驗(yàn)的拓展\t152
6.1.1 正態(tài)性檢驗(yàn)\t152
6.1.2 等方差檢驗(yàn)\t156
6.1.3 異常值檢驗(yàn)\t159
6.2 數(shù)值變量與泊松率\t161
6.2.1 泊松分布的擬合優(yōu)度檢驗(yàn)\t161
6.2.2 單樣本泊松率的統(tǒng)計推斷\t163
6.2.3 雙樣本泊松率的統(tǒng)計推斷\t164
6.3 品質(zhì)變量與卡方檢驗(yàn)\t167
6.3.1 擬合優(yōu)度的卡方檢驗(yàn)\t167
6.3.2 二維列聯(lián)表的卡方檢驗(yàn)\t172
6.3.3 三維列聯(lián)表的卡方檢驗(yàn)\t177
第7章 方差分析\t179
7.1 利用堆疊數(shù)據(jù)陳述假設(shè)\t179
7.2 單因子方差分析\t180
7.2.1 方差分析的概念\t180
7.2.2 基于一般線性模型的單因子方差
分析\t182
7.2.3 多重比較\t186
7.2.4 因子圖與預(yù)測\t188
7.2.5 完整案例\t189
7.2.6 單因子方差分析的其他問題\t191
7.3 雙因子方差分析\t194
7.3.1 不含交互作用的雙因子方差分析\t194
7.3.2 包含交互作用的雙因子方差分析\t198
7.4 方差分析的拓展\t202
7.4.1 協(xié)方差分析\t202
7.4.2 隨機(jī)效應(yīng)與混合效應(yīng)方差分析\t208
7.4.3 完全嵌套方差分析\t211
7.4.4 多元方差分析\t215
7.5 雙因子方差分析的數(shù)據(jù)格式與重復(fù)測量方差
分析\t217
7.5.1 雙因子方差分析的非堆疊數(shù)據(jù)格式與
轉(zhuǎn)換\t217
7.5.2 重復(fù)測量方差分析\t218
第8章 回歸分析\t219
8.1 相關(guān)關(guān)系與相關(guān)系數(shù)的假設(shè)檢驗(yàn)\t219
8.2 線性回歸:數(shù)值因變量\t220
8.2.1 簡單線性回歸\t220
8.2.2 多重線性回歸\t228
8.2.3 預(yù)測\t233
8.3 回歸診斷\t235
8.3.1 殘差分析:檢驗(yàn)?zāi)P偷慕y(tǒng)計正確性\t235
8.3.2 檢驗(yàn)異常值、高杠桿點(diǎn)和強(qiáng)影響點(diǎn)\t238
8.3.3 多重共線性\t240
8.3.4 線性回歸與回歸診斷的案例\t241
8.4 線性回歸中的其他問題\t245
8.4.1 品質(zhì)自變量\t245
8.4.2 包含品質(zhì)、數(shù)值兩種自變量的回歸\t252
8.4.3 模型構(gòu)建\t256
8.5 特殊因變量回歸\t261
8.5.1 二值logistic回歸\t261
8.5.2 名義logistic回歸\t271
8.5.3 順序logistic回歸\t276
8.5.4 泊松回歸\t279
8.6 變量具有函數(shù)關(guān)系時的應(yīng)用統(tǒng)計方法總結(jié)\t281
第9章 經(jīng)典統(tǒng)計的替代與補(bǔ)充\t283
9.1 非參數(shù)統(tǒng)計方法\t283
9.1.1 非參數(shù)統(tǒng)計方法概述\t283
9.1.2 單樣本的統(tǒng)計推斷\t284
9.1.3 雙樣本的統(tǒng)計推斷\t289
9.1.4 方差分析\t295
9.1.5 游程檢驗(yàn)與Spearman秩相關(guān)\t300
9.2 等價檢驗(yàn)\t303
9.2.1 單樣本均值的等價檢驗(yàn)\t303
9.2.2 兩樣本均值的等價檢驗(yàn)\t305
9.3 可靠性/生存分析\t308
9.3.1 生存分析概述\t308
9.3.2 生存分析的參數(shù)方法\t311
9.3.3 生存分析的非參數(shù)方法\t315
9.3.4 生存回歸\t318
第10章 多元統(tǒng)計分析\t321
10.1 多元統(tǒng)計分析概述\t321
10.2 聚類分析\t321
10.2.1 聚類分析的概念\t321
10.2.2 Q型聚類與距離\t322
10.2.3 Q型聚類:觀測值聚類\t323
10.2.4 Q型聚類:K均值聚類\t327
10.2.5 R型聚類與相似性:變量聚類\t329
10.3 判別分析\t330
10.4 主成分分析與因子分析\t335
10.4.1 主成分分析\t335
10.4.2 因子分析\t339
10.5 對應(yīng)分析\t343
10.5.1 對應(yīng)分析概述\t343
10.5.2 簡單對應(yīng)分析\t346
10.5.3 多重對應(yīng)分析\t348
第11章 時間序列分析與預(yù)測\t350
11.1 時間序列的基本概念\t350
11.1.1 時間序列圖\t350
11.1.2 自相關(guān)與平穩(wěn)性\t351
11.2 平穩(wěn)時間序列預(yù)測的平滑方法\t355
11.2.1 預(yù)測入門\t355
11.2.2 移動平均法\t356
11.2.3 指數(shù)平滑法\t358
11.3 非平穩(wěn)時間序列的預(yù)測方法\t360
11.3.1 時間序列的成分\t360
11.3.2 趨勢分析\t360
11.3.3 季節(jié)效應(yīng)\t364
11.4 ARIMA模型\t368
11.4.1 AR、MA和ARMA模型的估計和
預(yù)測\t368
11.4.2 差分與ARIMA模型\t375
11.4.3 模型選擇\t378
11.4.4 包含季節(jié)效應(yīng)的ARIMA模型\t382
11.5 回歸分析方法\t385
11.5.1 利用回歸分析估計時間序列數(shù)據(jù)\t385
11.5.2 時間序列回歸分析的回歸診斷\t387
第12章 質(zhì)量管理中的統(tǒng)計方法\t390
12.1 質(zhì)量管理概述\t390
12.2 過程分析的圖形方法\t391
12.2.1 帕累托圖\t391
12.2.2 因果圖\t392
12.2.3 多變異圖\t393
12.3 控制圖\t396
12.3.1 控制圖概述\t396
12.3.2 變量控制圖\t396
12.3.3 屬性控制圖\t401
12.3.4 利用控制圖預(yù)警\t407
12.4 過程能力分析\t408
12.4.1 過程能力分析概述\t408
12.4.2 正態(tài)數(shù)據(jù)的過程能力分析\t409
12.4.3 非正態(tài)數(shù)據(jù)的過程能力分析\t412
12.4.4 屬性數(shù)據(jù)的過程能力分析\t415
12.5 試驗(yàn)設(shè)計(DOE)\t417
12.5.1 試驗(yàn)設(shè)計概述\t417
12.5.2 全因子試驗(yàn)設(shè)計的計劃階段\t419
12.5.3 全因子試驗(yàn)設(shè)計的分析階段\t421
12.5.4 部分因子試驗(yàn)設(shè)計\t430
12.5.5 其他試驗(yàn)設(shè)計方法\t435
12.6 測量系統(tǒng)分析\t445
12.6.1 測量系統(tǒng)分析概述\t445
12.6.2 重復(fù)性和再現(xiàn)性\t447
12.6.3 偏移和線性\t453
12.6.4 重復(fù)性和偏移\t454

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) www.dappsexplained.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號