注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)高等數(shù)學(xué)

高等數(shù)學(xué)

高等數(shù)學(xué)

定 價:¥36.80

作 者: 賈彪,劉萍 主編
出版社: 東南大學(xué)出版社
叢編項:
標(biāo) 簽: 高等數(shù)學(xué)

ISBN: 9787564118082 出版時間: 2009-09-01 包裝: 平裝
開本: 16開 頁數(shù): 325 字數(shù):  

內(nèi)容簡介

  《高等數(shù)學(xué)》是依據(jù)教育部最新制定的《高職高專教育高等數(shù)學(xué)課程教學(xué)基本要求》和《高職高專教育人才培養(yǎng)目標(biāo)及規(guī)格》編寫而成的,《高等數(shù)學(xué)》汲取了部分一線優(yōu)秀教師實際教學(xué)中的教改成果和國內(nèi)外同類教材的優(yōu)點,更強調(diào)知識點引入的實際背景,突出知識的應(yīng)用,全書內(nèi)容包括函數(shù)與極限、導(dǎo)數(shù)與微分、導(dǎo)數(shù)的應(yīng)用、不定積分(常微分方程簡介)、定積分及其應(yīng)用、多元函數(shù)微積分、無窮級數(shù)等,書中每小節(jié)都附有習(xí)題,每章還附有復(fù)習(xí)題和自測題,題型豐富、題量大,便于學(xué)生自學(xué)。書中還編寫了部分數(shù)學(xué)史知識和數(shù)學(xué)應(yīng)用性閱讀材料,以期學(xué)生開闊視野,增加數(shù)學(xué)修養(yǎng),增強應(yīng)用數(shù)學(xué)知識的能力,《高等數(shù)學(xué)》可作為三年制高職高專、成人高等學(xué)歷教育的數(shù)學(xué)教材,也可作為專升本或?qū)^D(zhuǎn)本學(xué)生自學(xué)的參考教材,

作者簡介

暫缺《高等數(shù)學(xué)》作者簡介

圖書目錄

0 引文
0.1 感受微積分
0.2 給學(xué)習(xí)者的建議
1 函數(shù)與極限
1.1 函數(shù)
1.1.1 函數(shù)的概念
1.1.2 函數(shù)的表示法
1.1.3 函數(shù)的基本性質(zhì)
1.1.4 基本初等函數(shù)
1.1.5 復(fù)合函數(shù)
1.1.6 初等函數(shù)
習(xí)題1.1
1.2 函數(shù)的極限
1.2.1 數(shù)列的極限
1.2.2 函數(shù)的極限
習(xí)題1.2
1.3 無窮小與無窮大極限運算法則
1.3.1 無窮小與無窮大
1.3.2 極限運算法則
習(xí)題1.3
1.4 兩個重要極限無窮小的比較
1.4.1 兩個重要極限
1.4.2 無窮小的比較
習(xí)題1.4
1.5 函數(shù)的連續(xù)性
1.5.1 連續(xù)函數(shù)
1.5.2 函數(shù)的間斷點
1.5.3 初等函數(shù)的連續(xù)性
1.5.4 閉區(qū)間上連續(xù)函數(shù)的性質(zhì)
習(xí)題1.5
復(fù)習(xí)題一
自測題一
2 導(dǎo)數(shù)與微分
2.1導(dǎo)數(shù)
2.1.1 三個實例
2.1.2 導(dǎo)數(shù)的定義
2.1.3 導(dǎo)數(shù)的幾何意義
2.1.4 函數(shù)的可導(dǎo)與連續(xù)之間的關(guān)系
習(xí)題2.1
2.2 導(dǎo)數(shù)公式與函數(shù)和、差、積、商的求導(dǎo)法則
2.2.1 導(dǎo)數(shù)基本公式
2.2.2 函數(shù)和、差、積、商的求導(dǎo)法則
習(xí)題2.2
2.3 復(fù)合函數(shù)和反函數(shù)的導(dǎo)數(shù)
習(xí)題2.3
2.4 隱函數(shù)和由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)
2.4.1 隱函數(shù)的導(dǎo)數(shù)
2.4.2 由參數(shù)方程確立的函數(shù)的導(dǎo)數(shù)
習(xí)題2.4
2.5 自然科學(xué)和社會科學(xué)中的變化率高階導(dǎo)數(shù)
2.5.1 在化學(xué)中的應(yīng)用
2.5.2 在經(jīng)濟學(xué)中的應(yīng)用
2.5.3 高階導(dǎo)數(shù)
習(xí)題2.5
2.6 函數(shù)的微分
習(xí)題2.6
復(fù)習(xí)題二
目測題二
3 導(dǎo)數(shù)的應(yīng)用
3.1 微分中值定理與洛必達法則
3.1.1 微分中值定理
3.1.2 洛必達法則
習(xí)題3.1
3.2 函數(shù)的單調(diào)性與極值
3.2.1 函數(shù)的單調(diào)性
3.2.2 函數(shù)的極值
習(xí)題3.2
3.3 函數(shù)的最值與應(yīng)用
3.3.1 函數(shù)在閉區(qū)間上的最大值與最小值
3.3.2 最值的應(yīng)用(優(yōu)化問題)
習(xí)題3.3
3.4 函數(shù)的凹凸性、拐點及函數(shù)圖形的描繪
3.4.1 曲線的凹凸性與拐點
3.4.2 函數(shù)圖形的描繪
習(xí)題3.4
3.5 曲率
3.5.1 弧微分
3.5.2 曲率
習(xí)題3.5
復(fù)習(xí)題三
自測題三
4 不定積分
4.1 不定積分與基本積分公式
4.1.1 原函數(shù)與不定積分的概念
4.1.2 基本積分公式
4.1.3 不定積分的性質(zhì)
習(xí)題4.1
4.2 積分的方法
4.2.1 第一類換元積分法(湊微分法)
4.2.2 第二類換元積分法
4.2.3 分部積分法
4.2.4 積分表的使用
習(xí)題4.2
4.3 常微分方程
4.3.1 微分方程的概念
4.3.2 可分離變量的微分方程
習(xí)題4.3
4.4 一階線性微分方程及應(yīng)用
4.4.1 一階線性微分方程
4.4.2 一階微分方程的簡單應(yīng)用
習(xí)題4.4
復(fù)習(xí)題四
自測題四
5 定積分及其應(yīng)用
5.1 定積分的概念
5.1.1 引例
5.1.2 定積分的定義
5.1.3 定積分的幾何意義
5.1.4 定積分的性質(zhì)
習(xí)題5.1
5.2 微積分基本公式
5.2.1 積分可變上限函數(shù)
5.2.2 微積分基本公式——牛頓-萊布尼茲公式
習(xí)題5.2
5.3 定積分的積分法
5.3.1 定積分的換元積分法
5.3.2 定積分的分部積分法
習(xí)題5.3
5.4 廣義積分
5.4.1 無窮區(qū)間上的廣義積分
5.4.2 界函數(shù)的廣義積分
習(xí)題5.4
5.5 定積分在幾何上的應(yīng)用
5.5.1 微元法
5.5.2 平面圖形的面積
5.5.3 旋轉(zhuǎn)體的體積
習(xí)題5.5
5.6 定積分在物理上的應(yīng)用
5.6.1 變力做功
5.6.2 液體的壓力
習(xí)題5.6
復(fù)習(xí)題五
自測題五
6 多元函數(shù)微積分
6.1 多元函數(shù)的概念、二元函數(shù)的極限和連續(xù)性
6.1.1 多元函數(shù)的概念一
6.1.2 元函數(shù)的極限
6.1.3 二元函數(shù)的連續(xù)性’
習(xí)題6.1
6.2 偏導(dǎo)數(shù)
6.2.1 偏導(dǎo)數(shù)的概念
6.2.2 高階偏導(dǎo)數(shù)
6.2.3 多元復(fù)合函數(shù)與隱函數(shù)的求導(dǎo)法則.
習(xí)題6.2
6.3 全微分及其應(yīng)用
6.3.1 全微分的概念
6.3.2 全微分在近似計算中的應(yīng)用
習(xí)題6.3
6.4 二元函數(shù)的極值與最值
6.4.1 二元函數(shù)的極值
6.4.2 元函數(shù)的最值
6.4.3 條件極值
6.4.4 最小二乘法
習(xí)題6.4
6.5 二重積分的概念與性質(zhì)
6.5.1 兩個相似問題
6.5.2 重積分的概念
6.5.3 重積分的性質(zhì)
習(xí)題6.5
6.6 二重積分的計算
6.6.1 重積分在直角坐標(biāo)系中的計算
6.6.2 重積分在極坐標(biāo)中的計算
習(xí)題6.6
6.7 二重積分的應(yīng)用
6.7.1 重積分在幾何上的應(yīng)用——體積
6.7.2 重積分在物理上的應(yīng)用
習(xí)題6.7
復(fù)習(xí)題六
自測題六
7 無窮級數(shù)
7.1 數(shù)項級數(shù)
7.1.1 數(shù)項級數(shù)的基本概念
7.1.2 級數(shù)收斂的必要條件
7.1.3 級數(shù)的基本性質(zhì)
7.1.4 級數(shù)的積分判別法與應(yīng)用
習(xí)題7.1
7.2 數(shù)項級數(shù)斂散性判別法
7.2.1 正項級數(shù)及其斂散性判別法
7.2.2 交錯級數(shù)及其斂散性判別法
7.2.3 任意項級數(shù)斂散性判別法
習(xí)題7.2
7.3 冪級數(shù)
7.3.1 冪級數(shù)及其收斂域
7.3.2 冪級數(shù)在收斂區(qū)間內(nèi)的性質(zhì)
習(xí)題7.3
7.4 函數(shù)展開成冪級數(shù)
7.4.1 泰勒(Taylor)公式與麥克勞林(Machaurin)公式
7.4.2 泰勒級數(shù)與麥克勞林級數(shù)
7.4.3 函數(shù)展開成冪級數(shù)
7.4.4 函數(shù)冪級數(shù)展開式的應(yīng)用
習(xí)題7.4
復(fù)習(xí)題七
自測題七
附錄Ⅰ 初等數(shù)學(xué)中的常用公式
附錄Ⅱ 積分表
參考答案
參考文獻

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) www.dappsexplained.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號