Jean-Marie Dubois,1950年出生于法國Nancy市,物理學博士,法國國家科研中心(CNRS)杰出研究導師兼Jean Lamour研究所所長。從1978年至2005年培養(yǎng)了20位博士,并擔任下述機構(gòu)的負責人:①復雜金屬合金歐洲合作中心(涉及12個國家19個團體中的255位科學家和80位博士組成的研究集團)總主持;②Jean Lamour研究所關(guān)于材料-冶金-納米科學-等離子體-表面科學課題組的基金和建筑規(guī)劃項目的負責人;③準晶體研發(fā)的Brite-Euram項目的協(xié)調(diào)人;④Nancy材料科學和工程實驗室主任;⑤Nancy材料工程中心的科學主任;⑥法國準晶體和復雜合金重點項目課題組組長(涉及法國30個實驗室的130位科學家的研究項目)。主要著作有:發(fā)表學術(shù)論文300余篇,著作5本,14項專利,內(nèi)容涉及固體物理、材料科學和應用,準晶態(tài)材料和復雜金屬合金的應用等。在國際學術(shù)會議上報告100余次。主要成就為:適用于金屬-準金屬玻璃相變原子結(jié)構(gòu)的化學孿晶模型(1980年至1982年);鋁-基金屬玻璃的發(fā)現(xiàn)(1982年專利);根據(jù)中子衍射數(shù)據(jù)最先建立Al-Mn準晶體的結(jié)晶模型(1986年);Al-Cu-Fe合金中液體-準晶體可逆轉(zhuǎn)變的最先在位研究(1986年);準晶體潛在應用的頭一個專利(1988年);準晶體低熱導率的研究(1991年專利);最先提出工業(yè)規(guī)模制造準晶體的設(shè)想(1992年至1994年);復雜金屬合金中電子態(tài)的偏分密度的系統(tǒng)研究(1994年至今);復雜金屬合金的浸潤及摩擦特性的實驗和理論研究;復雜金屬合金低摩擦特性在真空技術(shù)和航空技術(shù)中的應用(2001年至今)等。主要的榮譽有:英國劍橋大學Churchill學院會員,法國冶金和材料學會頒發(fā)的Jean Rist獎,法國國家科研中心授予的銅質(zhì)獎章,IBM材料科學獎,大連技術(shù)大學終身邀請教授,清華大學海外專家友誼獎,法國物理學會Yves Rocard獎,等等。
圖書目錄
TABLE of CONTENTS
Foreword The Golden Mean and the Kitchen General References
Chapter 1 What to Know to Start with 1 Introduction 2 Classical and Non-Classical Crystals 3 The Reciprocal Space 4 The Search for Enhanced Mechanical Properties 5 The Birth of a Monster 6 The Quarrel of Ancients and Modems 7 The World of Quasicrystals 8 Recovering the Periodicity 9 Organised Disorder: the Phasons 10 From Tilings to Coverings References
Chapter 2 Strange Physical Properties 1 Introduction 2 Basics of Metal Physics, in Very Simple Words 2.1 Electron Transport in Metallic Crystals 2.2 Electron Bands 2.3 The Hume-Rothery Rules in Crystals 3 Electronic Transport in Quasicrystals 3.1 Phenomenological Data 3.2 An Insulator Made of Metals 3.3 Quantum Interference Effects 3.4 Variable Range Hopping 3.5 Hierarchical Recurrent Localization 3.6 Optical Properties 3.7 Another Step Towards a Model of Electronic Conductivity 4 Electron Densities of States 4.1 Pseudogap and Relevant Experimental Information 4.2 The Hume-Rothery Gap in Related Crystals 4.3 Surface Electronic States 4.4 A Bit More about d-states and the Role of Transition Metals 4.5 Enhanced Stability of Quasicrystals and Approximants 5 Lattice Dynamics and Thermal Conductivity 5.1 Lattice Vibrations in Icosahedral Mono-Domain Samples 5.2 Heat Conduction 5.3 Structural Scattering of Phonons 5.4 Electronic Contribution to Heat Transport 6 Magnetism References
Chapter 3 When Atoms Move Away 1 Introduction 2 Brittle Intermetallics that End into Chewing-Gum 2.1 Hardness, Brittleness and Low Friction 2.2 Plastic Behaviour at Elevated Temperature 2.3 The Role of Dislocations 2.4 Behind Dislocations, Cluster Friction 3 Non-Conventional Surfaces 3.1 Rough and Flat Surfaces 3.2 Static Friction on Clean Surfaces 4 Oxidation Behaviour 4.1 Dependence on Oxidizing Environment 4.2 Kinetics and Temperature Dependence 5 Atomic Mobility 5.1 Atomic Transport in Normal Crystals 5.2 Diffusion in Icosahedral Quasicrystals 5.3 Phason Assisted Diffusion 5.4 Atomic Jumps References
Chapter 4 Preparation and Mass Production 1 Introduction 2 Phase Selection 3 The Multitude of Approximants 3.1 Crystals and Approximants in the A1-Cu-Fe-Cr System 3.2 B2-Based Approximants in Relation to Quasicrystals 4 Phase Diagrams 4.1 Growth from the Liquid State 4.2 Equilibrium Phase-Diagram Data 5 Phase Transformations 5.1 Order-Disorder Transitions 5.2 Phason-Driven Transitions 5.3 Pressure-Induced Transitions 5.4 Surface Transformations 6 Preparation in the Laboratory 6.1 Out-of-Equilibrium Methods 6.2 Mono-Domain Samples 6.3 The Nightmare of Growing a Stable Quasicrystal 6.4 Sintering 7 The Thick Coatings Route 7.1 Thermal Spraying versus Magnetron Sputtering Techniques 7.2 Processing of Atomized Powders 7.3 Polishing and Surface Preparation 7.4 Phase Stability of Quasicrystalline Coatings in Agressive Media 8 Thin Films and Nanosized Precipitates 8.1 Multilayers or Vapour Deposited Films 8.2 New Data from Kinetics of Growth 8.3 Nanosized Precipitates in Selected Metallic Alloys References
Chapter 5 The Rise of a Dream 1 Introduction 2 Smart Surfaces 2.1 Facts and Artifacts 2.2 Wetting and Electronic Properties 2.3 Cooking Utensils for the Future 3 Application to Energy Savings 3.1 Thermal Barriers 3.2 Reducing Friction and Wear 3.3 Friction in Vacuum and (Once More) Surface Energy 4 Electronic Devices 4.1 Light Absorption and Sensors 4.2 Thermo-Power Generation 5 Generation of a Green Energy 5.1 Catalysis 5.2 Hydrogen Storage 6 High-Performance Alloys for Mechanical Applications 6.1 New Maraging Steels and Light Alloys 6.2 Metal and Polymer Matrix Composites 7 Perspective View at Other Applications References