注冊(cè) | 登錄讀書(shū)好,好讀書(shū),讀好書(shū)!
讀書(shū)網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書(shū)教育/教材/教輔教材研究生/本科/專(zhuān)科教材橢圓曲線(xiàn)的算術(shù)理論

橢圓曲線(xiàn)的算術(shù)理論

橢圓曲線(xiàn)的算術(shù)理論

定 價(jià):¥68.00

作 者: J.H.SilvermanH.Silverman
出版社: 世界圖書(shū)出版公司
叢編項(xiàng): Graduate Texts in Mathematics
標(biāo) 簽: 暫缺

ISBN: 9787506201353 出版時(shí)間: 1999-11-01 包裝: 簡(jiǎn)裝本
開(kāi)本: 24開(kāi) 頁(yè)數(shù): 400 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  The preface to a textbook frequently contains the author's justification for offering the public "another book" on the given subject. For our chosen topic, the arithmetic of elliptic curves, there is little need for such an apologia.Considering the vast amount of research currently being done in this area,the paucity of introductory texts is somewhat surprising. Parts of the theory are contained in various books of Lang (especially [La 3] and [La 5]); and there are books of Koblitz ([Ko]) and Robert ([Rob], now out of print) which concentrate mostly on the analytic and modular theory. In addition, survey articles have been written by Cassels ([Ca 7], really a short book) and Tate ([Ta 5]. which is beautifully written, but includes no proofs). Thus the author hopes that this volume will fill a real need, both for the serious student who wishes to learn the basic facts about the arithmetic of elliptic curves; and for the research mathematician who needs a reference source for those same basic facts.本書(shū)為英文版。

作者簡(jiǎn)介

暫缺《橢圓曲線(xiàn)的算術(shù)理論》作者簡(jiǎn)介

圖書(shū)目錄

Preface
Introduction
CHAPTERI
AlgebraicVarieties
1.AffineVarieties
2.ProjectiveVarieties
3.MapsbetweenVarieties
CHAPTERII
AlgebraicCurves
1.Curves
2.MapsbetweenCurves
3.Divisors
4.Differentials
5.TheRiemann-RochTheorem
CHAPTERIII
TheGeometryofEllipticCurves
1.WeierstrassEquations
2.TheGroupLaw
3.EllipticCurves
4.Isogenies
5.TheInvariantDifferential
6.TheDualIsogeny
7.TheTateModule
8.TheWeilPairing
9.TheEndomorphismRing
10.TheAutomorphismGroup
CHAPTERIV
TheFormalGroupofanEllipticCurve
1.ExpansionaroundO
2.FormalGroups
3.GroupsAssociatedtoFormalGroups
4.TheInvariantDifferential
5.TheFormalLogarithm
6.FormalGroupsoverDiscreteValuationRings
7.FormalGroupsinCharacteristicp
CHAPTERV
EllipticCurvesoverFiniteFields
1.NumberofRationalPoints
2.TheWeilConjectures
3.TheEndomorphismRing
4.CalculatingtheHasseInvariant
CHAPTERVI
EllipticCurvesoverC
1.EllipticIntegrals
2.EllipticFunctions
3.ConstructionofEllipticFunctions
4.Maps-AnalyticandAlgebraic
5.Uniformization
6.TheLefschetzPrinciple
CHAPTERVII
EllipticCurvesoverLocalFields
1.MinimalWeierstrassEquations
2.ReductionModulo
3.PointsofFiniteOrder
4.TheActionofInertia
5.GoodandBadReduction
6.TheGroupE/Eo
7.TheCriterionofNeron-Ogg-Shafarevich
CHAPTERVllI
EllipticCurvesoverGlobalFields
1.TheWeakMordell-WeilTheorem
2.TheKummerPairingviaCohomology
3.TheDescentProcedure
4.TheMordell-WeilTheoremoverQ
5.HeightsonProjectiveSpace
6.HeightsonEllipticCurves
7.TorsionPoints
8.TheMinimalDiscriminant
9.TheCanonicalHeight
10.TheRankofanEllipticCurve
CHAPTERIX
IntegralPointsonEllipticCurves
1.DiophantineApproximation
2.DistanceFunctions
3.Siegel'sTheorem
4.TheS-UnitEquation
5.EffectiveMethods
6.Shafarevich'sTheorem
7.TheCurveY2=X3+D
8.Roth'sTheorem--AnOverview
CHAPTERX
ComputingtheMordell-WeilGroup
1.AnExample
2.Twisting--GeneralTheory
3.HomogeneousSpaces
4.TheSelmerandShafarevich-TateGroups
5.Twisting--EllipticCurves
6.TheCurveY2=X3+DX
APPENDIXA
EllipticCurvesinCharacteristics2and3
APPENDIXB
GroupCohomology(HOandH1)
1.CohomologyofFiniteGroups
2.GaloisCohomology
3.Non-AbelianCohomology
APPENDIXC
FurtherTopics:AnOverview
11.ComplexMultiplication
12.ModularFunctions
13.ModularCurves
14.TateCurves
15.NeronModelsandTate'sAlgorithm
16.L-Series
17.DualityTheory
18.LocalHeightFunctions
19.TheImageofGalois
20.FunctionFieldsandSpecializationTheorems
NotesonExercises
Bibliography
ListofNotation
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書(shū)網(wǎng) www.dappsexplained.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)